Offline Vehicle Routing Problem with Online Bookings: A Novel Problem Formulation with Applications to Paratransit

Amutheezan Sivagnanam¹, Salah Uddin Kadir¹, Ayan Mukhopadhyay², Philip Pugliese³, Abhishek Dubey², Samitha Samaranayake⁴, Aron Laszka⁵

¹University of Houston, ²Vanderbilt University, ³Chattanooga Area Regional Transport Agency, ⁴Cornell University, ⁵Pennsylvania State University

Motivation

We focus on the problem of **online day ahead booking**, where passengers **provide flexible broad windows (e.g., 3 hours)** that need to be **tightened (e.g., 30 minutes)** in real-time.

Applications: Paratransit, Food Delivery, etc.

Existing Vehicle Routing Problem (VRP)

Offline VRP

Online VRP

This material is based upon work sponsored by the National Science Foundation under Grant CNS-1952011 and by the Department of Energy under Award DE-EE0009212

Solution Approach

All the requests	are	known
------------------	-----	-------

Request arrives in real time

Allow large running time

Make quicker decision

Problem Statement

How to select tight pickup windows at the time of booking, based on both requests booked so far as well as expectation of future requests?

GOAL: Learning optimal policy that determines tight pickup window during online decision making, that minimizes total travel time and number of vehicle routes required

DATA: Trip data that contains details of pickup and dropoff locations, and broad pickup windows

We partnered with **Chattanooga Area Regional Transportation Authority (CARTA)** and obtained the real-world paratransit trip data

Model and Problem Formulation

Online Booking Problem

Inputs:

Existing trips $(\langle T_1, ..., T_{i-1} \rangle, \langle w_1, ..., w_{i-1} \rangle)$ Current vehicle routes $(\mathbb{R}^{(i-1)})$ Incoming request (T_i, W_i)

Outputs:

Tight pickup window (w_i) Updated vehicle routes ($\hat{R}^{(i)}$)

Optimized vehicle routes $(R^{(i)})$

Constraints:

Tight pickup windows should be within the broad pickup windows

State-Action: State space is *enormous* and *complex*, to overcome the complexity we map the *state-action* into following feature vectors

- Busyness of the area at given time of the day
- Additional travel time/distance
- Tightness of requests within the vehicle route
- Expectation of future requests (|T| i)

Reward Shaping: Rewards from environment are delayed (e.g., by 140 to 200 steps); instead, we compute reward as the difference in cost (i.e., total travel time and vehicle routes required) between before and after tightening pickup windows

 $\tilde{c}_i = VRP^*(\mathbf{T}, \langle w_1, \dots, w_{i-1}, w_i, W_{i+1}, \dots, W_{|\mathbf{T}|} \rangle) - VRP^*(\mathbf{T}, \langle w_1, \dots, w_{i-1}, W_i, W_{i+1}, \dots, W_{|\mathbf{T}|} \rangle)$

Data Collection and Experimentation Setup

Collect historical paratransit trip data from **Chattanooga**, **Tennessee**. **6** months of data, with an average of **140** trips per day

Obtain the travel time and travel distance data using **OSMNx** and **NetworkX**

Implement the entire framework in Python **3.8** (used **TensorFlow** for Neural Networks)

Run the experiments in **Intel Xeon E5-2680 28-core CPU** and **128 GB of RAM**

Vehicle capacity: **9** passengers, Maximum route duration: **10** hours, Tight windows: **30** minutes, Broad windows: **3** hours

Evaluation

The trained DRL agent is able to **reduce the cost** by selecting tight pickup windows during online booking **compared to naive selection** (i.e., always choose the middle of broad windows)

Cost	100%			 Naive Booking with VRoom Naive Booking with Google OR Tools 	
tion in	50%	×	×	×	
Reduction	0%	★ - ×	×		× -

 $W_i^{\text{start}} \le w_i^{\text{start}} \le w_i^{\text{end}} \le W_i^{\text{end}}$

Offline Vehicle Routing Problem

Outputs:

Inputs: Trips ($\langle T_1, ..., T_i \rangle$, $\langle w_1, ..., w_i \rangle$) Candidate vehicle routes ($\hat{R}^{(i)}$)

Constraints:

Must serve all the trip requests

Pickup and dropoff must ensure time window and capacity constraints Duration of vehicle route must be less than $D^{maxroute}$

Objective:

Select tight windows such that **the optimal cost** of resulting offline VRP is **minimized**

 $argmin_{\mu}\mathbb{E}_{(\boldsymbol{T},\boldsymbol{W})\sim\mathcal{D}}\left[VRP^{*}\left(\boldsymbol{T},\boldsymbol{w}\right)\left|\left(w_{i},\hat{\boldsymbol{R}}^{(i)}\right)=\mu\left(\langle\boldsymbol{T}_{1},...,\boldsymbol{T}_{i-1}\rangle,\langle\boldsymbol{w}_{1},...,\boldsymbol{w}_{i-1}\rangle,\boldsymbol{W}_{i},\boldsymbol{R}^{(i-1)}\right),\boldsymbol{R}^{(i)}=\alpha\left(\langle\boldsymbol{T}_{1},...,\boldsymbol{T}_{i}\rangle,\langle\boldsymbol{w}_{1},...,\boldsymbol{w}_{i}\rangle,\hat{\boldsymbol{R}}^{(i)}\right)\right]$

Challenges:

We need to determine the tight pickup windows during online booking within a limited time frame (i.e., 1 - 2 seconds)

- considering **the large number of trips** booked so far
- minimizing the number of vehicle routes required

Training Duration: 1 - 2 days per episode Decision time: 0.25 - 2 seconds

The DRL agent **supported by the anytime algorithm performed better than** a DRL agent **without anytime algorithm**

• The trained DRL agent determines

fraction of seconds

trained without

the tight pickup windows within a

• The DRL agent trained running the

performs better than the agent

anytime algorithm between requests

Conclusion

- The novel problem formulation for online booking by minimizing the total travel time and total vehicle routes
- Significant reduction in costs due to selecting tight pickup time windows using trained DRL agent instead of a naive selection

Contact:

Amutheezan Sivagnanam (amutheezan.com) Aron Laszka (aronlaszka.com)

smarttransit.ai